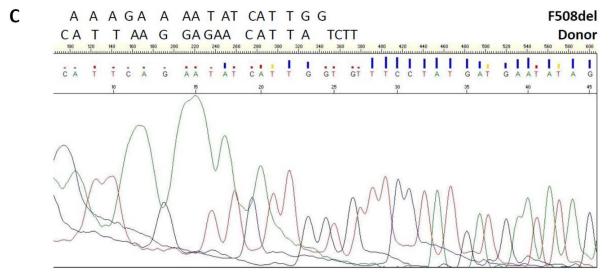
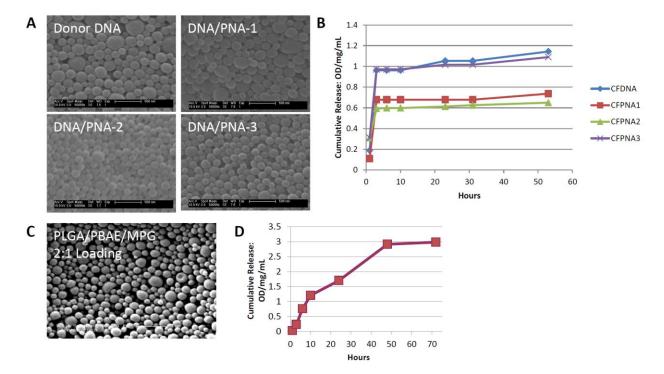

**Supplementary Figure 1. PNA binding.** To test the binding of each PNA to its targeted sequence in the CFTR gene we used a gel shift assay. Plasmids were created containing approximately 200 base pairs of the CFTR gene, including the PNA binding sites. CF-PNA-1 (hCF-PNA-1) binds 54 bp downstream of the F508DEL target site, CF-PNA-2 (hCF-PNA-2) binds 178 bp downstream, and CF-PNA-3 (hCF-PNA-3) binds 317 bp upstream. mCF-PNA-2 binds in murine CFTR. J represents pseudoisocytosine, a C analog for improved triplex formation at physiologic pH. To test binding, the PNAs were incubated with plasmid DNA containing the target site overnight, then the plasmid was cut with restriction enzymes flanking the binding site, and the products were analyzed by electrophoresis on an 8% non-denaturing PAGE gel, with silver stain for visualization. hCF-PNA-2 binding is shown in the main text.

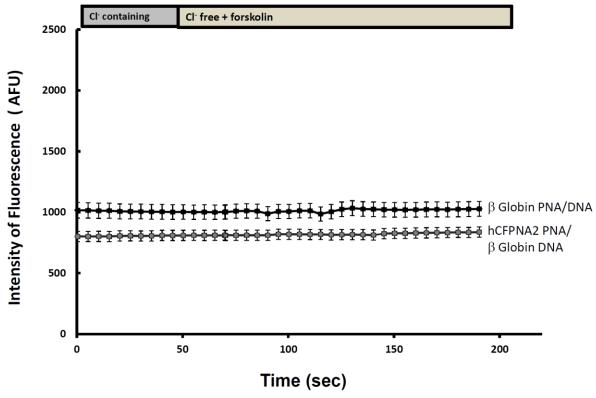



Supplementary Figure 2. AS-PCR can differentiate between corrected and F508DEL

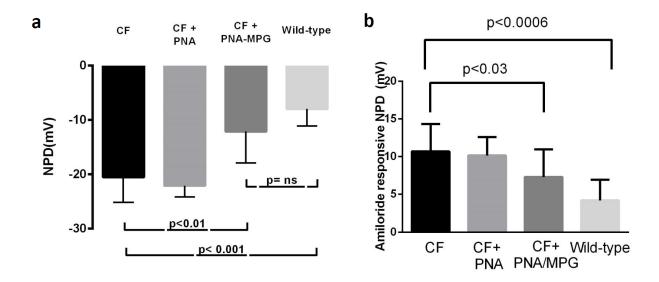
CFTR gene. (A) Plasmids were created containing a 712 bp segment of the CFTR gene containing the F508DEL site, or the sequence of the donor DNA which is designed to correct the F508DEL mutation as well as introduce some additional base pair changes to further tag the sequence for facile identification by PCR or genomic sequencing. (B) AS-PCR can differentiate between the corrected (donor) and F508DEL sequences. (C) DNA from human bronchial epithelial cells carrying the F508DEL mutation was spiked with differing concentrations of the donor DNA immediately prior to the PCR reaction. The lack of amplification in the AS-PCR assay by the donor/corrected primers, indicates that the donor DNA itself does not participate as a primer or provide a false template. (D) AS-PCR could be inhibited by high concentrations of PNA or donor DNA. Plasmid DNA with either the donor or F508DEL mutation spiked with


PNA and DNA at concentrations at > 10x the expected cellular level lead to inhibition of the PCR reaction.

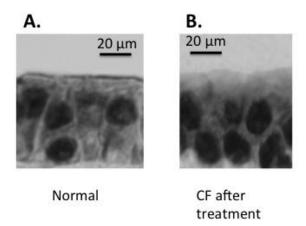



| В | <b>Cell Concentration</b>  | Numbe | r of Wells                | Number Positive |
|---|----------------------------|-------|---------------------------|-----------------|
|   | 20/well                    | 192   |                           | 19              |
|   | 10/well                    | 192   |                           | 15              |
|   | 1/well                     | 192   |                           | 6               |
|   | Percent Modification: 0.7% |       | <b>95% CI:</b> 0.5%-0.96% |                 |

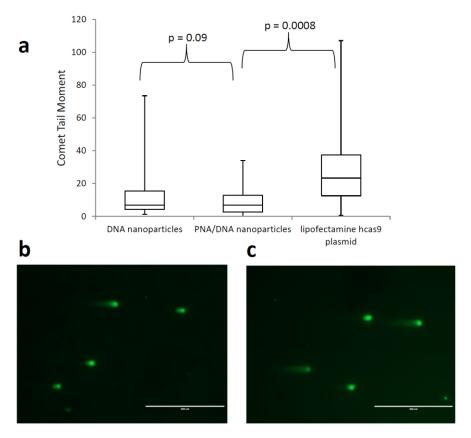



**Supplementary Figure 3. Isolation of corrected cells by limiting dilution and cloning into multi-well plates.** (A) Cells were plated at dilutions ranging from 100 cells/well to 1 cell/well. After expansion to produce enough cells for harvest, genomic DNA was extracted from each well, and AS-PCR used to detect presence of the corrected *CFTR* sequence. (B) The frequency of modification was calculated using limiting dilution analysis. (C) In one of the isolated clones (411), sequence modification was confirmed by regular sequencing. While Figure 2 shows sequencing of a 712 bp region of clone 411 after 35 cycles PCR amplification, here we show sequencing after amplification of a 100 bp region surrounding the modification site, after 20 cycles of PCR amplification, to avoid PCR bias. The region with our modification (3 base-pair insertion, plus 4 additional silent mutations) shows lower sequencing quality, as may be expected due to the indel, and presence of both sequences.




**Supplementary Figure 4. Formulation of nanoparticles containing PNA/DNA targeted to** *CFTR*. (**A&B**) PLGA nanoparticles with DNA alone or PNA:DNA loading ratio of 1:2. (**C&D**) PLGA/PBAE/MPG particles with hCFPNA2:DNA loading ratio of 2:1. (**A&C**) Nanoparticles containing the donor DNA alone or with each of the candidate PNA molecules were synthesized, and imaged by SEM. Average sizes of particles were analyzed by ImageJ: diameters were 120 +/- 40 nm for blank, 150 +/- 55 nm for CFDNA, 120 +/-27 for CFPNA1, 140 +/- 72 for hCFPNA2, and 130 +/- 42 for hCFPNA3 particles. (**B&D**) Release of nucleic acid from nanoparticles incubated at 37°C.

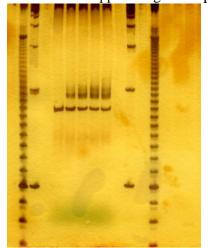



Supplementary Figure 5. Nanoparticles with PNA not targeted to CFTR show no effect on chloride efflux. Chloride efflux was measured using N-[ethoxycarbonylmethyl]- 6-methoxy-quinolinium bromide (MQAE), a fluorescent indicator dye. Cells (n=24) were treated as in Figure 4, but with PLGA/PBAE/MPG nanoparticles containing PNA/DNA targeting the human  $\beta$ -globin gene or with PNA targeting CFTR and DNA targeting  $\beta$ -globin. Error bars= standard error of the mean.

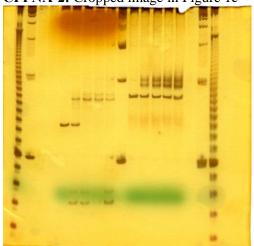


**Supplementary Figure 6. Baseline NPD and amiloride response in CF, treated-CF, and wildtype mice.** Mice were treated by intranasal infusion with nanoparticles. Nasal potential difference measurements were assessed prior to nanoparticle treatment, and subsequent to treatment, as shown in Figure 4. Wild-type mice (n = 6), untreated CF mice (n = 18), CF mice treated with PLGA (CF+PNA) (n = 8) or PLGA/PBAE/MPG nanoparticles (CF+PNA-MPG) (n = 8) containing PNA/DNA are shown. All error bars show SD. (a) Summary of baseline nasal potential difference change. NPD measurements were compared between groups using one way ANOVA with multiple comparisons. (b) Amiloride responsive NPD change. NPD measurements were compared between groups using one way ANOVA with multiple comparisons.




Supplementary Figure 7. Histology of nasal epithelia of treated and untreated mice, paraffin embedded and stained with H&E.

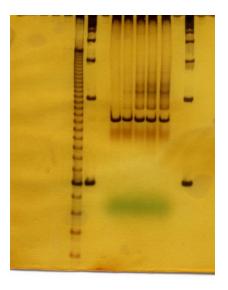



Supplementary Figure 8. Comet assay for DNA damage. CFBE cells were treated for 24 hours with 2 mg/mL DNA-containing PLGA/PBAE/MPG nanoparticles, 2 mg/mL PNA and DNA-containing PLGA/PBAE/MPG nanoparticles, or 2 ug of hCas9 plasmid (Addgene plasmid 41815). Cells were prepared per the Trevigen Comet Assay protocol, placed on slides, electrophoresed, stained with Sybr green, and visualized using an EVOS microscope. (a) TriTek Comet Score FreeWare was used to calculate comet tail moments, represented as box-whisker plots. Plots show the median comet tail moments (horizontal lines), min and max comet tail moments (top and bottom of vertical lines), and first to third quartile (box). P-values are for Student's ttest, two-tailed, unpaired, unequal variance. (b) Representative image for PNA/DNA nanoparticles. (c) Representative image for hcas9.

## **Supplementary Figure 9. UNCROPPED GEL IMAGES FOR PNA GEL SHIFTS**

**CFPNA-1:** Cropped image in Supplementary Figure 1




**CFPNA-2:** Cropped image in Figure 1c



**CFPNA-3:** Cropped image in Supplementary Figure 1



mCFPNA-2: Cropped image in Supplementary Figure 1



## Supplementary Figure 10.

**AS-PCR on F508del and corrected plasmids:** Cropped image in Supplementary Figure 2B



|                          | TREATED CFBE | proportions | UNTREATED CFBE        |            | proportions        |
|--------------------------|--------------|-------------|-----------------------|------------|--------------------|
| chr15                    | TREATED CIDE | ргорогиона  | chr15                 |            | <u>proportions</u> |
| Total                    | 251695       |             | Total                 | 530760     |                    |
| 0 mismatch               | 229686       | 0.91256     | 0 mismatch            | 459809     | 0.86632            |
| 1 mismatch               | 20350        | 0.08085     | 1 mismatch            | 61671      | 0.11619            |
| 2 mismatch               | 1507         | 0.00599     | 2 mismatch            | 7703       | 0.01451            |
| 3 mismatch               | 108          | 0.00043     | 3 mismatch            | 1214       | 0.00229            |
| 4 mismatch               | 18           | 0.00007     | 4 mismatch            | 234        | 0.00044            |
| 5 mismatch               | 12           | 0.00005     | 5 mismatch            | 80         | 0.00015            |
|                          |              |             |                       |            |                    |
| chr1                     |              |             | chr1                  |            |                    |
| Total                    | 401797       |             | Total                 | 858936     |                    |
| 0 mismatch               | 357349       | 0.88938     | 0 mismatch            | 731641     | 0.8518             |
| 1 mismatch               | 39967        | 0.09947     | 1 mismatch            | 109715     | 0.12773            |
| 2 mismatch               | 3936         | 0.0098      | 2 mismatch            | 14826      | 0.01726            |
| 3 mismatch               | 408          | 0.00102     | 3 mismatch            | 2172       | 0.00253            |
| 4 mismatch               | 55           | 0.00014     | 4 mismatch            | 384        | 0.00045            |
| 5 mismatch               | 18           | 0.00004     | 5 mismatch            | 102        | 0.00012            |
|                          |              |             |                       |            |                    |
| chr6                     |              |             | chr6                  |            |                    |
| Total                    | 461729       |             | Total                 | 961725     |                    |
| 0 mismatch               | 206678       | 0.44762     | 0 mismatch            | 412262     | 0.42867            |
| 1 mismatch               | 225397       | 0.48816     | 1 mismatch            | 464482     | 0.48297            |
| 2 mismatch               | 26986        | 0.05845     | 2 mismatch            | 73976      | 0.07692            |
| 3 mismatch               | 2290         | 0.00496     | 3 mismatch            | 9241       | 0.00961            |
| 4 mismatch               | 243          | 0.00053     | 4 mismatch            | 1352       | 0.00141            |
| 5 mismatch               | 36           | 0.00008     | 5 mismatch            | 203        | 0.00021            |
| 1 10                     |              |             | 1 44                  |            |                    |
| chr16                    | 504467       |             | chr16                 | 4447070    |                    |
| Total                    | 504467       | 0.75745     |                       | 1117272    | 0.73034            |
| 0 mismatch               | 381955       | 0.75715     | 0 mismatch            | 825930     | 0.73924            |
| 1 mismatch               | 109055       | 0.21618     | 1 mismatch            | 247965     | 0.22194            |
| 2 mismatch               | 11902        | 0.02359     | 2 mismatch            | 36742      | 0.03289            |
| 3 mismatch<br>4 mismatch | 1236         | 0.00245     | 3 mismatch            | 5278       | 0.00472            |
| 4 mismatch 5 mismatch    | 121<br>56    | 0.00024     | 4 mismatch 5 mismatch | 892<br>189 | 0.0008<br>0.00017  |
| 5 mismatch               | 50           | 0.00011     | 3 IIIISIIIalUI        | 199        | 0.00017            |
| chr3                     |              |             | chr3                  |            |                    |
| Total                    | 57698        |             | Total                 | 134309     |                    |
| 0 mismatch               | 52424        | 0.90859     | 0 mismatch            | 116734     | 0.86915            |
| 1 mismatch               | 4608         | 0.07986     | 1 mismatch            | 14917      | 0.11106            |
|                          | 4000         | 0.07300     | ± 1111311101CH        | T-71/      | 0.11100            |

| 2 mismatch | 346    | 0.006   | 2 mismatch | 1752    | 0.01304 |
|------------|--------|---------|------------|---------|---------|
| 3 mismatch | 51     | 0.00088 | 3 mismatch | 312     | 0.00232 |
| 4 mismatch | 35     | 0.00061 | 4 mismatch | 119     | 0.00089 |
| 5 mismatch | 47     | 0.00081 | 5 mismatch | 97      | 0.00072 |
|            |        |         |            |         |         |
| chr11      |        |         | chr11      |         |         |
| Total      | 343047 |         | Total      | 945354  |         |
| 0 mismatch | 306195 | 0.89257 | 0 mismatch | 805771  | 0.85235 |
| 1 mismatch | 32269  | 0.09407 | 1 mismatch | 118156  | 0.12499 |
| 2 mismatch | 3808   | 0.0111  | 2 mismatch | 17664   | 0.01869 |
| 3 mismatch | 481    | 0.0014  | 3 mismatch | 2804    | 0.00297 |
| 4 mismatch | 77     | 0.00022 | 4 mismatch | 536     | 0.00057 |
| 5 mismatch | 22     | 0.00006 | 5 mismatch | 94      | 0.0001  |
|            |        |         |            |         |         |
| chr4       |        |         | chr4       |         |         |
| Total      | 641990 |         | Total      | 1395861 |         |
| 0 mismatch | 519442 | 0.80911 | 0 mismatch | 1216147 | 0.87125 |
| 1 mismatch | 111962 | 0.1744  | 1 mismatch | 156143  | 0.11186 |
| 2 mismatch | 9521   | 0.01483 | 2 mismatch | 19992   | 0.01432 |
| 3 mismatch | 896    | 0.0014  | 3 mismatch | 2884    | 0.00207 |
| 4 mismatch | 99     | 0.00015 | 4 mismatch | 481     | 0.00034 |
| 5 mismatch | 18     | 0.00003 | 5 mismatch | 122     | 0.00009 |
|            |        |         |            |         |         |
| chr17      |        |         | chr17      |         |         |
| Total      | 94144  |         | Total      | 188011  |         |
| 0 mismatch | 40784  | 0.43321 | 0 mismatch | 77406   | 0.41171 |
| 1 mismatch | 46505  | 0.49398 | 1 mismatch | 91505   | 0.4867  |
| 2 mismatch | 5905   | 0.06272 | 2 mismatch | 15895   | 0.08454 |
| 3 mismatch | 672    | 0.00714 | 3 mismatch | 2487    | 0.01323 |
| 4 mismatch | 73     | 0.00078 | 4 mismatch | 379     | 0.00202 |
| 5 mismatch | 66     | 0.0007  | 5 mismatch | 148     | 0.00079 |
|            |        |         |            |         |         |
| chr18      |        |         | chr18      |         |         |
| Total      | 41662  |         | Total      | 79529   |         |
| 0 mismatch | 38127  | 0.91515 | 0 mismatch | 69401   | 0.87265 |
| 1 mismatch | 3173   | 0.07616 | 1 mismatch | 8755    | 0.11009 |
| 2 mismatch | 279    | 0.0067  | 2 mismatch | 1084    | 0.01363 |
| 3 mismatch | 43     | 0.00103 | 3 mismatch | 179     | 0.00225 |
| 4 mismatch | 8      | 0.00019 | 4 mismatch | 39      | 0.00049 |
| 5 mismatch | 6      | 0.00014 | 5 mismatch | 15      | 0.00019 |
|            |        |         |            |         |         |
| chrX       |        |         | chrX       |         |         |
| Total      | 111204 |         | Total      | 200817  |         |
|            |        |         |            |         |         |

| 0 mismatch | 88760  | 0.79817 | 0 mismatch | 148976 | 0.74185 |
|------------|--------|---------|------------|--------|---------|
| 1 mismatch | 13159  | 0.11833 | 1 mismatch | 28764  | 0.14323 |
| 2 mismatch | 2155   | 0.01938 | 2 mismatch | 5656   | 0.02816 |
| 3 mismatch | 361    | 0.00325 | 3 mismatch | 1170   | 0.00583 |
| 4 mismatch | 94     | 0.00085 | 4 mismatch | 249    | 0.00124 |
| 5 mismatch | 71     | 0.00064 | 5 mismatch | 148    | 0.00074 |
|            |        |         |            |        |         |
| chr8       |        |         | chr8       |        |         |
| Total      | 72801  |         | Total      | 147441 |         |
| 0 mismatch | 65711  | 0.90261 | 0 mismatch | 126820 | 0.86014 |
| 1 mismatch | 6430   | 0.08832 | 1 mismatch | 17720  | 0.12018 |
| 2 mismatch | 496    | 0.00681 | 2 mismatch | 2308   | 0.01565 |
| 3 mismatch | 62     | 0.00085 | 3 mismatch | 321    | 0.00218 |
| 4 mismatch | 15     | 0.00021 | 4 mismatch | 74     | 0.0005  |
| 5 mismatch | 20     | 0.00027 | 5 mismatch | 69     | 0.00047 |
|            |        |         |            |        |         |
| chr13      |        |         | chr13      |        |         |
| Total      | 102832 |         | Total      | 356423 |         |
| 0 mismatch | 93158  | 0.90592 | 0 mismatch | 308280 | 0.86493 |
| 1 mismatch | 8672   | 0.08433 | 1 mismatch | 41319  | 0.11593 |
| 2 mismatch | 872    | 0.00848 | 2 mismatch | 5614   | 0.01575 |
| 3 mismatch | 60     | 0.00058 | 3 mismatch | 831    | 0.00233 |
| 4 mismatch | 41     | 0.0004  | 4 mismatch | 234    | 0.00066 |
| 5 mismatch | 4      | 0.00004 | 5 mismatch | 54     | 0.00015 |
|            |        |         |            |        |         |
| chr21      |        |         | chr21      |        |         |
| Total      | 305545 |         | Total      | 721648 |         |
| 0 mismatch | 268910 | 0.8801  | 0 mismatch | 608536 | 0.84326 |
| 1 mismatch | 30988  | 0.10142 | 1 mismatch | 92796  | 0.12859 |
| 2 mismatch | 3807   | 0.01246 | 2 mismatch | 14506  | 0.0201  |
| 3 mismatch | 778    | 0.00255 | 3 mismatch | 3107   | 0.00431 |
| 4 mismatch | 352    | 0.00115 | 4 mismatch | 1052   | 0.00146 |
| 5 mismatch | 373    | 0.00122 | 5 mismatch | 924    | 0.00128 |

**Supplementary Table 1. Deep Sequencing of Off-Target Sites.** Expanded data from Figure 6. 200 bp regions of DNA with partial homology to the PNA molecule (>14 bps) in the indicated chromosomes were amplified by PCR, and PCR amplicons were sent for deep sequencing using the HiSeq (Illumina) 75 bp paired-end reads. CFBE cells treated 3 times with 2 mg/mL PLGA/PBAE/MPG particles with PNA/DNA were compared to untreated CFBE cells. The total number of aligned sequences queried, and the number of sequences with 0-5 mismatched based pairs, as well as the proportion of such sequences, are given above. Read quality data is given below:

## **Sequence Quality Data for Table 1:**

Sequence Quality, Treated:

Total sequences: 2220919

Qual trimmed: 2187335

Total passed: 2187335

Short: 33584

Pattern trimmed: 0

Read-1:

| Read-2:                      |  |
|------------------------------|--|
| Total sequences: 2220919     |  |
| Pattern trimmed: 0           |  |
| Qual trimmed: 2147418        |  |
| Total passed: 2147418        |  |
| Short: 73501                 |  |
| Sequence Quality, Untreated: |  |
| Read-1:                      |  |
| Total sequences: 4893403     |  |
| Pattern trimmed: 0           |  |
| Qual trimmed: 4830703        |  |
| Total passed: 4830703        |  |
| Short: 62700                 |  |
|                              |  |
| Read-2:                      |  |
| Total sequences: 4893403     |  |
| Pattern trimmed: 0           |  |
| Qual trimmed: 4766808        |  |
| Total passed: 4766808        |  |
|                              |  |

Short: 126595

## **Supplementary Table 2. Primer List.**

| Primer Use                                                      | Sequences                                                 |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| CFTR gene-specific reverse primer for AS-PCR                    | 5' CCCTCTAATTCTCTGCTGGCAGATC 3'                           |
| (reverse complment starting from nt 80162)                      | 5 CCCICIAATICICIGCIGGCAGATC 5                             |
| AS-PCR forward primer for F508del                               | 5'GCCTGGCACCATTAAAGAAAATATCATTGG3'                        |
| AS-PCR forward primer for corrected donor                       | 5'CCTGGCACCATTAAGGAGAACATTATCTT 3'                        |
| AS PCR on RNA → cDNA                                            | 5' GTCTGGACGTAGACTTTGTAGCTCAG 3'                          |
|                                                                 | 5'GCCTGGCACCATTAAAGAAAATATCATTGG3'                        |
| Regular PCR of flanking region in CFTR                          | 5'AATGACCTAATAATGATGGGTTTTATTTCCA 3'                      |
|                                                                 | 5'ATATCTTCACAATTTTACCCCTCTAATTCT3'                        |
| Regular PCR of off-target region for                            | 5'AAACAAACTGGCCTTCATGG3'                                  |
| sequencing                                                      | 5'GGCCACACTTTCTTCCTTCA3'                                  |
| Primers for Deep Sequencing (excluding 6 bas                    | e pair bar codes)                                         |
| Mouse CFTR                                                      | TCTGCTCTCAATTTTCTTGGA                                     |
|                                                                 | GGCAAGCTTTGACAACACTC                                      |
| Human CFTR                                                      | TGTTCTCAGTTTTCCTGGATTATG                                  |
|                                                                 | TGGCATGCTTTGATGACG                                        |
| Mouse X-chromosome donor off-target site                        | TGGATCTTCCTGGTGATTTTG                                     |
|                                                                 | TTATAAATTTCCCAGACTAGGCTATAA                               |
| Human chromosome 4 donor off-target site                        | TTCTACTAAAAGAAACTTCTGTGTCC                                |
|                                                                 | CATCCCACAGACTTAATGCAAA                                    |
| Primers for Deep Sequencing, Human PNA of 6 base pair bar codes | f-target sites (14 or more matched base pairs), excluding |
| On chromosome 1:                                                | ATTCCTGAGATAGAACAAACCATT                                  |
|                                                                 | TGAAAATGAAGCTGTTTGCTT                                     |
| On chromosome 3:                                                | TTTTGCCTTCACTTTTGAAGAA                                    |
|                                                                 | GGTGGGCACAGTTAGAAAC                                       |
| On chromosome 4:                                                | TGTTCCATCACATAACCCCATA                                    |
| 0 1                                                             | CCTGAATTCTGCAGCCCTTA                                      |
| On chromosome 6:                                                | CCCCAAACACACACTGAAT                                       |
| 0 1 0                                                           | AAGTTGGTTCCTCCTCAA                                        |
| On chromosome 8:                                                | CATCACCTGGTGCAGGAATA                                      |
| On characters 11.                                               | TTTGCCCTTTCTGGTCATTT                                      |
| On chromosome 11:                                               | TGCATATTTCTGTCCCCTTCT                                     |
| On almonto and 12.                                              | AGAACACTCCACCCAATGAAG                                     |
| On chromosome 13:                                               | GCCATAGCATTTTCCTGGT<br>TCTCACCTCCCAAACATTCC               |
| On characters 14.                                               |                                                           |
| On chromosome 14:                                               | AAACAAACTGGCCTTCATGG                                      |
| On chromosoma 15:                                               | GGCCACCTAATAATTCCAGCA                                     |
| On chromosome 15:                                               | TCCCACCTAATAATTCCAGCA                                     |
| On ahramasama 16.                                               | GGATGAATTATTGCCCACTAG                                     |
| On chromosome 16:                                               | GCCCACTACACCTAGGCATATC                                    |
| On ahnamasama 17.                                               | CGCTTTGTTTTCTCTCAGCA                                      |
| On chromosome 17:                                               | ACACAGCATCCTAGCCTTC                                       |
|                                                                 | TCCACAGCATCCTAGCCTTC                                      |

| On chromosome 18: | TTGTGGGAAATTTCAATGCTT<br>TCTTGAAAGAAGCCAGAGGAA |
|-------------------|------------------------------------------------|
| On chromosome 21: | CCACAGATCCAGAAAGCTCAG<br>CCTTTCTTTGTGTTTGCATGG |
| On chromosome X:  | CCAAGCACTTTAGCCTCTGG<br>GGAGAGGGAGAACAGCAA     |